

WBS 6.1: Pixels Phase-II Upgrade

Philippe Grenier
SLAC National Accelerator Laboratory

US ATLAS Phase-II L2 Manager's Meeting 01 April, 2015

Outline

- Introduction.
- ITk Options and Cost.
- Pixel Volume.
- ITk Common Items.
- US Deliverables.
- Module Assembly.
- WBS Structure.

Introduction

 Layout and High eta TFs still at work to answer fundamental questions: Strips/Pixels volumes, # Pixels layers, Pixels disks/rings, eta coverage, etc...

Conclusions by end of 2015.

Pixels layouts: I-Beams (LBNL), Alpine (LAPP) and SLIM (Geneva, initially targeting 5th Pixel Layer CMOS), Unity (long inner barrel, LBNL/UK).

4/5/6 Pixels Layers.

2 (3) options for TDR (2017).

Costing exercise also still at work.

Preliminary report for LHCC June meeting – Final fall 2015.

Need completion of Costing exercise to make plans (US Contributions/Cost).

ITk Options

(Steve/Claudia at recent ITk Week)

Descope - Option	200MCHF option	235MCHF option	275MCHF option
Barrel 3 + 1 disc set (saves 24 MCHF) Y		
Stub (saves 2 MCHF)		Υ	
2 "outer Layers" (saves 3 + 4 MC	HF) Y		
Eta coverage to =2.7 (saves 12 MCHI	=)		
Eta coverage to ~3.2 (saves 6 MCHF) X	Х	
Eta coverage to =4.0 (saves 0 MCHF)			Χ
Saving in MCHF	37	8	0
ITk Cost	97.8	126.8	134.8

Y=removed from a high-eta LoI-like configuration X=limit of eta coverage Note here "outer layer" means one side of strip module

ITk Cost

- All descoping/costing costs assume LOI layout.
- We won't build it! LOI gives us a *cost* reference, which is hopefully conservative.

Extension of Pixel Volume?

- Pixel volume being revisited (vs LOI) to allow 5th Pixel Layer.
- Flat ITk cost: Strips cost needs to go down. Remove Strips layer.
- 5th Layer technology *likely* different (cheaper) from other layers.
- Leaves room for a 6th layer, if cheap technology becomes available and/or cheap design matures (that saves surface, eg alpine-like).
- 5th barrel layer also means more rings.

	4-Layer Pixels	5-Layer Pixels*	
Si Area (m²)	9.5	14.4	
# of Modules	6436	9630	
Cost (MCHF)	28.6	40.6	
Module Cost (MCHF)	16.6	23.2	

^{*} Lots of assumptions!

ITk Common Items

- No L2 General ITk, so some items have to fall into Pixels or Strips.
- Most of common items lead to deliverables related to Pixels. So decided with Carl to have all Common items in the Pixels WBS structure. Not all items lead to deliverables.

Common items:

- High Speed Optical Readout.
- DAQ and test systems (HSIO-II and FELIX).
- Testbeams and irradiations.
- Sensors: 3D, CMOS (Strips and Pixels).
- Global Mechanics (see next).

US Deliverables - Pixels (Common ITk)

US deliverables are pretty much the same as last year's ITk meeting in UCSC:

Readout chip.

Design, production wafer probing.

Sensors: 3D and CMOS.

Likely no deliverables, but design/prototyping.

Module assembly and testing.

Likely 20% of whole production (see next).

Local Supports.

Main actor of design/prototyping of I-Beams. Whole mechanical production in US.

High Speed electrical readout (stave-PPO).

Lots of developments in the US (twisted pairs, kapton flex, twinax). Production experience with IBL.

High Speed optical readout (PP1-USA15).

Need more bandwidth than present versatile link. R&D in the US.

Stave assembly?

Stave assembly in the US? Ideally done close/at CERN, but might be required.

US Deliverables – Global Mechanics

Inputs from Eric Anderssen:

Integration.

Layout support, Global Envelope model, Service integration (strips/pixels), thermal management,

Global Support Structures.

Structure design and fabrication for Pixel Support Tube, Insertable Pixel Supports, Pixel Barrel Supports, contribute to design of Outer Barrel.

Surface Assembly.

Assembly tooling/process definition (mostly pixel), assembly effort/oversight

Installation (underground).

Process planning, tooling design, service connection, installation effort/oversight.

Installation will have some overlap with current M&O operations, i.e. decommissioning.

Module Assembly

	4-Layer Pixels	5-Layer Pixels	
Si Area (m²)*	9.5	14.4	
# of Modules*	6436	9630	
Cost* (MCHF)	28.6	40.6	
Module Cost* (MCHF)	16.6	23.2	

Maurice at last ITk week:

3 years

Module Assembly

- Number of Modules to assemble (4-layer Pixels), including spares: 7000!
- US share (20%): 1400 modules.
- Rate: ~20 modules/week. Might need higher rate (more modules / less time).
- For current Pixels, rate was ~10 modules/week/site.
- Working assumption/proposal (to be discussed):
 - Few assembly sites: UCSC, LBNL and SLAC. May need only two: 10 mod/week/site.
 - Testing: more institutes involved:
 - Ship assembled modules to Institutes?
 - Institutes people come to assembly sites?
- What happens if Stave Assembly required?
- Dummy pre-production in 2015/2016?
 - Currently NOT involved in Modules developments.
 - Launch pre-production of dummy quad modules to learn/practice?

WBS – **L3**

<u>Updated inputs from all Institutes (13 Institutes)</u>

6.1.1 Local Supports I-Beams.

LBNL, SLAC.

- 6.1.1.1 Production (mechanics) of I-Beams.
 - 6.1.1.1 Design.
 - 6.1.1.1.2 Prototyping.
 - 6.1.1.1.3 Production.
- 6.1.2 Readout FE Chip.
 LBNL, U of Washington.
- 6.1.3 Modules.
 UCSC, LBNL, SLAC, UNM, U of Oklahoma, UT Dallas.
- 6.1.4 Off Detector Electronics (EoS, Type-1, electrical R/O; common items). UCSC, SLAC, UNM, Ohio SU, Oklahoma SU, U of Oklahoma.

12

6.1.5 High Speed Optical Readout.
 ANL, LBNL, SMU.

WBS – **L3**

- 6.1.6 DAQ and Tests Setups.
 - SLAC, U of Washington, ANL, Oklahoma SU, Stony Brook.
- 6.1.7 Sensors.
 - SLAC, UCSC.
- 6.1.8 Testbeams and Irradiations.
 - UNM, SLAC.
- 6.1.9 ITk Mechanics.

LBNL, SLAC, U of Washington, BNL(?)

Cost – Profile (Pixels PL)

- 2017 (end): TDR.
- 2018 (mid): MoU (before, mainly pre-production 10-15%).
- 2018-2022: Production.
- 2022: Integration.
- 2023: Integration/test/commissioning.

Conclusion

- Still lots of unknowns on major items.
- Layout Scoping Pixel Volume.
- Started to work on detailed items (WBS L4). Will update the spreadsheet soon.
- Global Mechanics: Workshop the week after the AUW.

Backup slides

IDR – Barrel Pixels Staves

Detector:	Radial position	Half Length	Tilt angle	Staves	Modules/stave
	[mm]	[mm]	degrees		
Layer 1	39	456.5	-14	16	22
Layer 2	78	747.0	-14	16	36
Layer 3	155	722.8	-14	32	35
Layer 4	250	722.8	-14	52	35

SLIM

Less surface – lower cost, less heat load, less services

UNITY

I-Beam barrel, curved staves, high eta with extended inner barrel. Meant to be viewed with optimized end-cap.

5-6 Layer Pixel Detector

- 5th Layer.
 - Tracking performance (pT, d0, and Z0 resolution) almost identical between
 4 and 5 layers. Same for fakes.
 - Improved patter recognition, seeded in the pixel detector.
 - Better two-particle separation in high pT jets.
 - More robust for high pile-up environment.
- 6^{th Layer}: Andy: improved patter recognition.

Descoping – Option B

Descoping – Option C

